Synthesis and Characterization of Organophosphazene Polyoxotungstate $[(N_3P_3)(SiW_{11}O_{39}H_2)_3]^{12}$

Jian GONG^{*}, Chang Lu SHAO, Lun Yu QU

Department of Chemistry, Northeast Normal University, Changchun 130024

Abstract: A new organophosphazene polyoxotungstate, $[(N_3P_3)(SiW_{11}O_{39}H_2)_3]^{12}$, has been prepared by reaction of hexachlorocyclotriphosphazene with undecatungstosilicate, and characterized by elemental analysis, infrared spectroscopy, and multinuclear ³¹P NMR.

Keywords: Polyoxotungstate, phosphazene, NMR (³¹P), synthesis.

The diversity of phosphazene chemistry can be attributed to the varied reactivity of the phosphorus-halogen bond toward different nucleophiles. Of particular interest is the synthetic diversity of phosphazenes leading to a broad range of cyclophosphazenes, which exhibit a variety of different functional groups¹⁻². In this paper, we report the synthesis and spectroscopic characterization of the first phosphazene polyoxotungstate $[(N_3P_3)(SiW_{11}O_{39}H_2)_3]^{12}$, and deduce the structure of the anion through IR and ³¹P NMR measurements.

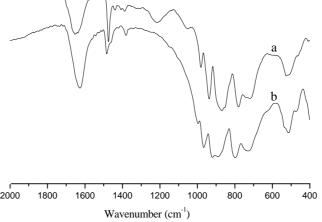
 $(Bu_4N)_6H_2[SiW_{11}O_{39}]$ was synthesized according to the published method³, and dried under vacuum for 24 h at 70 °C. To the well stirred suspension of 12 g of $(Bu_4N)_6H_2[SiW_{11}O_{39}]$ in 100 mL of freshly distilled acetonitrile (90 °C) was added dropwise, under N₂ atmosphere, 0.5 g of hexachlorocyclotriphazene in 50 mL of freshly distilled acetonitrile. The acetonitrile solution of hexachlorocyclotriphazene was added dropwise within 6 h, and the mixture was stirred at 90 °C for 140 h. The solid was separated by filtration, washed with benzene, and dried under vacuum for 24 h at 30 °C. The crude product was recrystallized from hot distilled water (2.4 g, yield 15.5%). Anal. Calcd. Si, 0.87; P, 0.96; W, 62.81; Found: Si, 0.90; P, 0.91; W, 63.11.

IR spectrum of the complex is shown in **Figure 1**. The bands at 700-1100 cm⁻¹ region corresponding to Keggin unit structural vibrations can be distinguished easily⁴, suggesting that the polyoxometallic moiety of the title complex still retains the basic framework of the Keggin structure. Compared with the IR spectrum of the SiW₁₁O₃₉⁸⁻, two new peaks at 1229 and 1067cm⁻¹, appear in the IR spectrum of the title complex. The characteristic band at 1229 cm⁻¹ suggests existence of N=P and 1067 cm⁻¹ band corresponds to P-O⁵. It indicates that polyoxometallic anion is combined with cyclotriphazene by using P-O bond.

^{*} E-mail: gongj823@nenu.edu.cn

Jian GONG et al.

1000 2000 1800 1600 1400 1200 800 600 400


Figure 1 IR spectra of $[(N_3P_3)(SiW_{11}O_{39}H_2)_3]^{-12-}$ (a) and $[SiW_{11}O_{39}]^{-8-}$ (b)

 ^{31}P NMR spectrum of the title complex exhibits one line at -1.7 ppm , indicating that three phosphorus atoms of the cyclotriphazene still remain the same chemical environment after the cyclotriphazene is combined with polyoxometallic anion. As we know, the C_s lacunary anion SiW₁₁O₃₉⁸⁻ has a hole surrounded by five oxygen atoms, one O_a, two O_b and two O_c. Obviously, two phosphoryl groups each bridges two of the five oxygen atoms that define the hole in the lacunary polyoxometallic anion. However, the results of the elemental analysis show that the rate of Si: P is 1:1, *i.e.* one cyclotriphazene molecular can be combined with three polyoxometallic anions. At the same time, one line of ³¹P NMR spectrum of the title complex indicates that one SiW₁₁O₃₉⁸⁻ is only combined with one phosphoryl group because of the same chemical environment of the three phosphorus atoms in the title complex. Obviously, another two edge-sharing oxygen possessed two hydrogen atoms. Why one polyoxometallic anion does not combine with two phosphoryl groups? The reason is the bigger spatial barrier.

References

- C. Nataro, C. N. Myer, W. M. Cleaver, C. W. Allen, J. Organomet. Chem., 2001, 637-639, 1. 2.84
- C. W. Allen, Coord. Chem. Rev., 1994, 130, 137. 2.
- 3. A. Teze, G. Herve, Inorg. Synth., 1990, 27, 87.
- Q. J. Shan, J. Gong, L. Y. Qu, J. Coord. Chem., 2002, 55, 319. 4.
- 5. H. Tang, P. N. Pintauro, Q. Guo, S. Oconnor, J. Appl. Polym. Sci., 1999, 71, 387.

Received 17 March, 2003

